Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(2): 26001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319881

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) encompass a class of chemically and structurally diverse compounds that are extensively used in industry and detected in the environment. The US Environmental Protection Agency (US EPA) 2021 PFAS Strategic Roadmap describes national research plans to address the challenge of PFAS. OBJECTIVES: Systematic Evidence Map (SEM) methods were used to survey and summarize available epidemiological and mammalian bioassay evidence that could inform human health hazard identification for a set of 345 PFAS that were identified by the US EPA's Center for Computational Toxicology and Exposure (CCTE) for in vitro toxicity and toxicokinetic assay testing and through interagency discussions on PFAS of interest. This work builds from the 2022 evidence map that collated evidence on a separate set of ∼150 PFAS. Like our previous work, this SEM does not include PFAS that are the subject of ongoing or completed assessments at the US EPA. METHODS: SEM methods were used to search, screen, and inventory mammalian bioassay and epidemiological literature from peer-reviewed and gray literature sources using manual review and machine-learning software. For each included study, study design details and health end points examined were summarized in interactive web-based literature inventories. Some included studies also underwent study evaluation and detailed extraction of health end point data. All underlying data is publicly available online as interactive visuals with downloadable metadata. RESULTS: More than 13,000 studies were identified from scientific databases. Screening processes identified 121 mammalian bioassay and 111 epidemiological studies that met screening criteria. Epidemiological evidence (available for 12 PFAS) mostly assessed the reproductive, endocrine, developmental, metabolic, cardiovascular, and immune systems. Mammalian bioassay evidence (available for 30 PFAS) commonly assessed effects in the reproductive, whole-body, nervous, and hepatic systems. Overall, 41 PFAS had evidence across mammalian bioassay and epidemiology data streams (roughly 11% of searched chemicals). DISCUSSION: No epidemiological and/or mammalian bioassay evidence were identified for most of the PFAS included in our search. Results from this SEM, our 2022 SEM on ∼150 PFAS, and other PFAS assessment products from the US EPA are compiled into a comprehensive PFAS dashboard that provides researchers and regulators an overview of the current PFAS human health landscape including data gaps and can serve as a scoping tool to facilitate prioritization of PFAS-related research and/or risk assessment activities. https://doi.org/10.1289/EHP13423.


Assuntos
60418 , Fluorocarbonos , Animais , Estados Unidos , Humanos , United States Environmental Protection Agency , Reprodução , Medição de Risco , Fluorocarbonos/toxicidade , Mamíferos
4.
Environ Int ; 169: 107468, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174483

RESUMO

BACKGROUND: Systematic evidence maps (SEMs) are gaining visibility in environmental health for their utility to serve as problem formulation tools and assist in decision-making, especially for priority setting. SEMs are now routinely prepared as part of the assessment development process for the US Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) and Provisional Peer Reviewed Toxicity Value (PPRTV) assessments. SEMs can also be prepared to explore the available literature for an individual chemical or groups of chemicals of emerging interest. OBJECTIVES: This document describes the typical methods used to produce SEMs for the IRIS and PPRTV Programs, as well as "fit for purpose" applications using a variety of examples drawn from existing analyses. It is intended to serve as an example base template that can be adapted as needed for the specific SEM. The presented methods include workflows intended to facilitate rapid production. The Populations, Exposures, Comparators and Outcomes (PECO) criteria are typically kept broad to identify mammalian animal bioassay and epidemiological studies that could be informative for human hazard identification. In addition, a variety of supplemental content is tracked, e.g., studies presenting information on in vitro model systems, non-mammalian model systems, exposure-level-only studies in humans, pharmacokinetic models, and absorption, distribution, metabolism, and excretion (ADME). The availability of New Approach Methods (NAMs) evidence is also tracked (e.g., high throughput, transcriptomic, in silico, etc.). Genotoxicity studies may be considered as PECO relevant or supplemental material, depending on the topic and context of the review. Standard systematic review practices (e.g., two independent reviewers per record) and specialized software applications are used to search and screen the literature and may include the use of machine learning software. Mammalian bioassay and epidemiological studies that meet the PECO criteria after full-text review are briefly summarized using structured web-based extraction forms with respect to study design and health system(s) assessed. Extracted data is available in interactive visual formats and can be downloaded in open access formats. Methods for conducting study evaluation are also presented which is conducted on a case-by-case basis, depending on the usage of the SEM.


Assuntos
Saúde Ambiental , Projetos de Pesquisa , Animais , Estudos Epidemiológicos , Humanos , Sistemas de Informação , Mamíferos , Estados Unidos , United States Environmental Protection Agency
5.
Environ Health Perspect ; 130(5): 56001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580034

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a large class of synthetic (man-made) chemicals widely used in consumer products and industrial processes. Thousands of distinct PFAS exist in commerce. The 2019 U.S. Environmental Protection Agency (U.S. EPA) Per- and Polyfluoroalkyl Substances (PFAS) Action Plan outlines a multiprogram national research plan to address the challenge of PFAS. One component of this strategy involves the use of systematic evidence map (SEM) approaches to characterize the evidence base for hundreds of PFAS. OBJECTIVE: SEM methods were used to summarize available epidemiological and animal bioassay evidence for a set of ∼150 PFAS that were prioritized in 2019 by the U.S. EPA's Center for Computational Toxicology and Exposure (CCTE) for in vitro toxicity and toxicokinetic assay testing. METHODS: Systematic review methods were used to identify and screen literature using manual review and machine-learning software. The Populations, Exposures, Comparators, and Outcomes (PECO) criteria were kept broad to identify mammalian animal bioassay and epidemiological studies that could inform human hazard identification. A variety of supplemental content was also tracked, including information on in vitro model systems; exposure measurement-only studies in humans; and absorption, distribution, metabolism, and excretion (ADME). Animal bioassay and epidemiology studies meeting PECO criteria were summarized with respect to study design, and health system(s) were assessed. Because animal bioassay studies with ≥21-d exposure duration (or reproductive/developmental study design) were most useful to CCTE analyses, these studies underwent study evaluation and detailed data extraction. All data extraction is publicly available online as interactive visuals with downloadable metadata. RESULTS: More than 40,000 studies were identified from scientific databases. Screening processes identified 44 animal and 148 epidemiology studies from the peer-reviewed literature and 95 animal and 50 epidemiology studies from gray literature that met PECO criteria. Epidemiological evidence (available for 15 PFAS) mostly assessed the reproductive, endocrine, developmental, metabolic, cardiovascular, and immune systems. Animal evidence (available for 40 PFAS) commonly assessed effects in the reproductive, developmental, urinary, immunological, and hepatic systems. Overall, 45 PFAS had evidence across animal and epidemiology data streams. DISCUSSION: Many of the ∼150 PFAS were data poor. Epidemiological and animal evidence were lacking for most of the PFAS included in our search. By disseminating this information, we hope to facilitate additional assessment work by providing the initial scoping literature survey and identifying key research needs. Future research on data-poor PFAS will help support a more complete understanding of the potential health effects from PFAS exposures. https://doi.org/10.1289/EHP10343.


Assuntos
Fluorocarbonos , Animais , Bases de Dados Factuais , Estudos Epidemiológicos , Fluorocarbonos/análise , Humanos , Mamíferos , Reprodução , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...